--- title: "An Application to HB Twofold Normal Model On sampel dataset" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{An Application to HB Twofold Normal Model} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## FIRST STEPS: Load package and load the data ```{r setup} library(saeHB.twofold) data("dataTwofold") ``` ## STEPS 2: Fitting HB Model ```{r} model=NormalTF(y~x1+x2,vardir="vardir",area = "codearea",weight = "w",iter.mcmc = 100000,thin=50,burn.in = 1000,data=dataTwofold) ``` ## STEP 3 Extract mean estimation ### Subarea Estimation ```{r} model$Est_sub ``` ### Area Estimatio ```{r} model$Est_area ``` ### Coefficient Estimation ```{r} model$coefficient ``` ### Random effect variance estimation ```{r} model$refVar ``` ## STEP 3 : Extract CV and MSE Subarea * CV $CV(\theta \hat)=\frac{SD(\theta \hat)}{(\theta \hat)} \times 100$ * MSE $MSE= V(\theta\hat)$ ```{r} CV=(model$Est_sub$SD)/(model$Est_sub$Mean)*100 MSE=model$Est_sub$SD^2 summary(cbind(CV,MSE)) ``` ## STEP 4 Extract CV and MSE of Area ```{r} CV2=(model$Est_area$SD)/(model$Est_area$Mean)*100 MSE2=model$Est_area$SD^2 summary(cbind(CV2,MSE2)) ``` ## STEP 5 : You can also compare the CV between subarea direct estimator and HB Twofold estimator ```{r} dirCV=sqrt(dataTwofold$vardir)/(dataTwofold$y)*100 summary(cbind(dirCV,CV)) ``` * Look that! ,CV on our model is less than CV on direct estimator. ```{r} boxplot(cbind(dirCV,CV),ylim=c(0,50)) ``` ```{r} model$refVar ``` ```{r} model$plot ```