## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 4 ) ## ----eval = FALSE------------------------------------------------------------- # install.packages(c("ssdtools", "tidyverse")) ## ----message = FALSE---------------------------------------------------------- library(ssdtools) library(ggplot2) ## ----eval = FALSE------------------------------------------------------------- # data <- read_csv(file = "path/to/file.csv") ## ----------------------------------------------------------------------------- ssddata::ccme_boron ## ----------------------------------------------------------------------------- ssd_dists_all() ## ----------------------------------------------------------------------------- fits <- ssd_fit_dists(ssddata::ccme_boron, dists = c("llogis", "lnorm", "gamma")) ## ----------------------------------------------------------------------------- tidy(fits) ## ----fig.alt="A plot of the CCME boron dataset with the gamma, log-logistic and log-normal distributions with a simple black and white background color scheme."---- theme_set(theme_bw()) # set plot theme autoplot(fits) + ggtitle("Species Sensitivity Distributions for Boron") + scale_colour_ssd() ## ----------------------------------------------------------------------------- ssd_gof(fits) ## ----eval = FALSE------------------------------------------------------------- # set.seed(99) # boron_pred <- predict(fits, ci = TRUE) ## ----------------------------------------------------------------------------- boron_pred ## ----fig.alt="A plot of the CCME boron dataset species colored by group and the model average species sensitivity distribution with a simple black and white background color scheme."---- ssd_plot(ssddata::ccme_boron, boron_pred, color = "Group", label = "Species", xlab = "Concentration (mg/L)", ribbon = TRUE ) + expand_limits(x = 5000) + # to ensure the species labels fit ggtitle("Species Sensitivity for Boron") + scale_colour_ssd() ## ----------------------------------------------------------------------------- set.seed(99) boron_hc5 <- ssd_hc(fits, proportion = 0.05, ci = TRUE) print(boron_hc5) boron_pc <- ssd_hp(fits, conc = boron_hc5$est, ci = TRUE) print(boron_pc) ## ----------------------------------------------------------------------------- boron_censored <- ssddata::ccme_boron |> dplyr::mutate(left = Conc, right = Conc) boron_censored$left[c(3, 6, 8)] <- NA ## ----------------------------------------------------------------------------- dists <- ssd_fit_dists(boron_censored, dists = ssd_dists_bcanz(n = 2), left = "left", right = "right" ) ## ----------------------------------------------------------------------------- ssd_gof(dists) ## ----------------------------------------------------------------------------- ssd_hc(dists, average = FALSE) ssd_hc(dists) ## ----fig.alt="A plot of the left censored CCME boron dataset with the model average species sensitivity distribution and arrows indicating the censoring."---- set.seed(99) pred <- predict(dists, ci = TRUE, parametric = FALSE) ssd_plot(boron_censored, pred, left = "left", right = "right", xlab = "Concentration (mg/L)" ) ## ----results = "asis", echo = FALSE------------------------------------------- cat(ssdtools::ssd_licensing_md())